Rectangular Integration (a.k.a. The Midpoint Rule) – Conceptual Foundations and a Statistical Application in R

The Chemical Statistician

Introduction

Continuing on the recently born series on numerical integration, this post will introduce rectangular integration.  I will describe the concept behind rectangular integration, show a function in R for how to do it, and use it to check that the $latex Beta(2, 5)$ distribution actually integrates to 1 over its support set.  This post follows from my previous post on trapezoidal integration.

midpoint rule

Image courtesy of Qef from Wikimedia Commons.

Conceptual Background of Rectangular Integration (a.k.a. The Midpoint Rule)

Rectangular integration is a numerical integration technique that approximates the integral of a function with a rectangle.  It uses rectangles to approximate the area under the curve.  Here are its features:

  • The rectangle’s width is determined by the interval of integration.
    • One rectangle could span the width of the interval of integration and approximate the entire integral.
    • Alternatively, the interval of integration could be sub-divided into…

View original post 887 more words

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s